Search results for "magnetization dynamics"
showing 10 items of 35 documents
Spin Hall magnetoresistance in antiferromagnetic insulators
2020
Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $\alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an ext…
Magnetization dynamics in polycrystalline Permalloy and epitaxial Co platelets observed by time-resolved photoemission electron microscopy
2009
We studied the dynamic magnetization response in rectangular polycrystalline Permalloy and also epitaxial Co structures (lateral sizes comprised tens of microns at a thickness of tens of nanometers) during the action of a magnetic field pulse, using time-resolved X-ray photoemission electron microscopy with a time resolution of 10 ps. In the case of Permalloy platelets the restoring torque that is necessary for the stroboscopic image acquisition is provided by the Landau flux closure structure representing a minimum of the free energy. We investigated the dynamic response of 90° Neel domain walls. The main results are: the maximum velocity of the domain wall is 1.5 × 104 m/s, the intrinsic …
Magnetization dynamics in microscopic spin-valve elements: Shortcomings of the macrospin picture
2007
We have studied ultrafast magnetodynamics in micropatterned spin-valve structures using time-resolved x-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism. Exciting the system with ultrafast field pulses of $250\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ width, we find the dynamic response of the free layer to fall into two distinctly different contributions. On the one hand, it exhibits localized spin wave modes that strongly depend on the shape of the micropattern. A field pulse applied perpendicular to the exchange bias field along the diagonal of a square pattern leads to the excitation of a standing spin wave mode with two nodes along the field direction.…
Dynamical and current-induced Dzyaloshinskii-Moriya interaction: Role for damping, gyromagnetism, and current-induced torques in noncollinear magnets
2020
Both applied electric currents and magnetization dynamics modify the Dzyaloshinskii-Moriya interaction (DMI), which we call current-induced DMI (CIDMI) and dynamical DMI (DDMI), respectively. We report a theory of CIDMI and DDMI. The inverse of CIDMI consists in charge pumping by a time-dependent gradient of magnetization ${\ensuremath{\partial}}^{2}\mathbit{M}(\mathbit{r},t)/\ensuremath{\partial}\mathbit{r}\ensuremath{\partial}t$, while the inverse of DDMI describes the torque generated by ${\ensuremath{\partial}}^{2}\mathbit{M}(\mathbit{r},t)/\ensuremath{\partial}\mathbit{r}\ensuremath{\partial}t$. In noncollinear magnets, CIDMI and DDMI depend on the local magnetization direction. The re…
Giant enhancement to spin battery effect in superconductor/ferromagnetic insulator systems
2021
We develop a theory of the spin battery effect in superconductor/ferromagnetic insulator (SC/FI) systems taking into account the magnetic proximity effect. We demonstrate that the spin-energy mixing enabled by the superconductivity leads to the enhancement of spin accumulation by several orders of magnitude relative to the normal state. This finding can explain the recently observed giant inverse spin Hall effect generated by thermal magnons in the SC/FI system. We suggest a nonlocal electrical detection scheme which can directly probe the spin accumulation driven by the magnetization dynamics. We predict a giant Seebeck effect converting the magnon temperature bias into the nonlocal voltag…
Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers
2020
In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in presence of both superconducting layers and of superconducting proximity at both superconductor/ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-…
Spinmotive force due to motion of magnetic bubble arrays driven by magnetic field gradient
2014
Interaction between local magnetization and conduction electrons is responsible for a variety of phenomena in magnetic materials. It has been recently shown that spin current and associated electric voltage can be induced by magnetization that depends on both time and space. This effect, called spinmotive force, provides for a powerful tool for exploring the dynamics and the nature of magnetic textures, as well as a new source for electromotive force. Here we theoretically demonstrate the generation of electric voltages in magnetic bubble array systems subjected to a magnetic field gradient. It is shown by deriving expressions for the electric voltages that the present system offers a direc…
Butterfly hysteresis curves generated by adiabatic Landau-Zener transitions
2006
Butterfly hysteresis curves observed in dynamical magnetization measurements on systems of low-spin magnetic molecules such as ${\mathrm{V}}_{15}$ can be explained by the interplay of adiabatic Landau-Zener transitions and relaxation. We investigate the magnetization dynamics analytically in the basis of the adiabatic energy levels of the spin $1∕2$, to a qualitative accordance with experimental observations. In particular, reversible behavior is found near zero field, the corresponding susceptibility being bounded by the equilibrium and adiabatic susceptibilities.
Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.
2018
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topologica…
Nonequilibrium magnetization dynamics of gadolinium studied by magnetic linear dichroism in time-resolved 4f core-level photoemission.
2008
The magnetic linear dichroism of the gadolinium 4f core level is studied in a time-resolved photoemission experiment employing laser pump- and synchrotron-radiation probe pulses. Upon optical excitation of the 5d6s valence electrons with femtosecond laser pulses, the magnetic order in the 4f spin system is reduced. Remarkably, the linear dichroism remains at 80% of the equilibrium contrast while the lattice temperature reaches the Curie temperature due to electron-phonon scattering. Contrasting itinerant ferromagnets, this shows that equilibration between the lattice and spin subsystems takes in Gd about 80 ps and is established in parallel with heat diffusion.